
Improving the web
developer experience
one feature at a time

Patrick Brosset – FOSDEM 2026

Hello everyone.
It’s great to be here, and I’m very honored to open this Browser and Web Platform track
with my talk.

1

It’s not just about the code.

Let’s talk data!

As front-end developers, building for the web, we rely on open-source software
a lot.
Much of the engines of the browsers we build for are open-source projects.
The very frameworks and libraries we rely on for our sites and apps are also very
often open-source.

This entire conference is proof that this is a thriving ecosystem.

But it's not only about the code.
Code is not what I’m here to talk about.

There are two things web devs, and browser engineers too, rely on a lot that's not
code: docs and data.
So let's talk about data.

2

Think about a typical day as a web developer.

Obviously, you write code. But you also depend on tools to write and debug that
code,
and on documentation to even know how to write it in the first place.

Both take data to be as useful as possible.
Both depend on massive amounts of data, to give you the best environment for
you to learn, write, and debug.

These tools and docs, they need an understanding of what you’re doing and the
features you’re using, in order to help you get things done.

3

Familiar with this?

4

And this?

5

What about docs/compat tooltips in browser DevTools?

6

And hover cards in your editor or IDEs?

All these examples rely, in some way, on open-source data which you benefit
from every day as a web developer
and without which much of your work would be a lot harder.

7

These were kind of obvious examples, here are more subtle ones which might
still have a big impact on web devs experience:

Knowing that a feature is deprecated, or currently behind a flag, or blocked by a
particular bug are all pieces of data that can come in very useful in the life of a
web developer.

Imagine docs without up to date browser compatibility data, or deprecated
warnings.
Imagine CI or linter tools that don’t know how to check if the features you use
work in your target browsers.

8

Up-to-date, high-quality data is

critical infrastructure for the web

industry

If you think about it, up to date web data is a critical infrastructure of the web
industry which, as developers, we don’t really think about.

9

browser-compat-data (BCD)

Let’s look at one of the critical data sources, probably the most important:

BCD, or browser-compat-data.

It’s the data behind all the compatibility tables on MDN
but also on many of the caniuse.com pages.
It’s used by VS Code, ESlint, babel, Bun, and many others.

10

BCD in numbers

Users

• 90,000 users on GitHub

• 1,000,000

downloads/week on

NPM

Data

• 20,000 keys

• (semi-) automatically

tracking all browser

beta releases

• 500 package releases

Contributors

• 1000

contributors

• 20,000+ GitHub

pull requests

- Used by 90,000 people, according to GitHub
- Downloaded 1,000,000 times per week, according to NPM
- More than 1000 contributors on GitHub
- 20,000 commits.
- 20,000 “keys”, where each key corresponds to one tiny specific aspect of a

web technology, like a single css property, or a single JS method parameter,
etc.

- Almost 500 releases
- Semi-automatically tracking browser beta releases, for the most up to date

data.

So, a very active project.

11

Main contributors

Most active contributors being:

- Open Web Docs, a vendor-neutral initiative to ensure the long-term health of
web platform docs and data.

- MDN team. BCD is under the MDN org on GitHub.
- A few individuals at browser vendor companies, super helpful as they often

know best as to which versions a given feature is supported in.
- A bunch of extremely helpful external contributors.

12

Using BCD

1. Install the dependency

npm install @mdn/browser-compat-data

2. Import the data in your project

import bcd from '@mdn/browser-compat-data' with { type: 'json' };

3. Use the data!

const support = bcd.css.properties.background.__compat;

Super easy to use too.

13

Intermission

Open-source projects need funding to last, remain relevant, secure, etc.
There’s a whole track about this at this very conference.

It’s very simple: if work is needed, then someone must do that work and get paid
for it.

Funding remains one of the biggest challenges, and something these projects
constantly have in mind,
and need to prioritize, sometimes instead of doing technical work for the
project.

So, big shoutout to all the sponsors and maintainers of BCD and other similar
projects.

For BCD, Mozilla employs a few engineers to help maintain the data and its
infrastructure, but it wouldn't be possible without outside help too.

14

Open Web Docs, which I also mentioned before, does a lot of the work that’s
needed.
Very active with updating data, reviewing PRs, but also maintaining and running a
tool that updates BCD based on latest browser beta releases.

14

OWD is (or has been) funded by these companies, and a lot of individual donors
via opencollective and github.

15

Donate now! Sponsor!

If you want to help make a difference, you can donate to OWD.
Or, even better, convince your company to become a sponsor.

16

More data sources

And there are more data sources out there, which benefit web developers,
sometimes indirectly.
Some of which browser companies make extensive use of, to prioritize their
work.

- State of CSS/JS/HTML surveys
useful for prioritization.
Results are accessible as JSON on the repo, which can then be queried via
GraphQL.

- Developer signals repo.
Very new. Starting to get integrated into various places, such as caniuse.com.
Allows us to capture use cases from developers about features which aren't
yet interoperable.

- Browser specs.
Helps with tracking the status of specs, ...

- Standards positions.
Makes it easy for developers and other browser vendors understand the
positions of Mozilla and Apple on various features, and whether they are likely

17

to ever become interoperable in their current state. Available as JSON data too.
- WPT test results

Allow us to track the implementation quality of features in browsers.

So there’s a lot of useful web-related data sources we can use to eventually make
the web platform a better place.
It’d be nice if they were all interconnected though. More on that next.

17

Powered by web-features

Let’s talk about one more web data-related open source project: web-features

It's unlikely that you've heard about it
But you might have heard about Baseline.

Baseline is this simplified status for features of the web platform
It gives you some sense of a feature's availability across browsers.

18

For example, Anchor Positioning is not Baseline, because it’s not yet supported
across all of the browsers that Baseline considers.

Invoker commands is Baseline Newly Available, because it’s now supported in
all browsers that Baseline considers, but it’s not been very long yet.

Finally, CSS layers is Baseline Widely Available, because it’s been supported in
all browsers that Baseline consider for long enough that’s considered much
more stable and safer to use.

It doesn’t replace careful testing and consideration of your specific use case,
but it makes certain decisions faster.

19

1100 features, and counting …

So, Baseline is made possible by the web-features project.
But what is web-features exactly?

Web-features is a repository that lists _all_ features of the web.
BCD already does this, but at a level that is extremely granular.
BCD wants to know about each and every attribute, property, event, parameter,
and each and every little option.
Web-features doesn’t need this. Instead, it wants to track features at a level
which makes sense to developers.

If most developers think of, say, view transitions as one feature, then there
should be a feature named view transitions in the repo.

The great thing about that isn't the amount of data that comes with each
feature.
Because it's mostly just name, description, spec, and the compat data that
supports Baseline.
The great thing is that each feature is identified by a unique ID we can use to link
to other things.

20

Now we have a catalog for all the features of the web platform.

20

And this allows us to interconnect the other things I mentioned before!

By using web-features IDs, we can connect to docs, Web Platform Test results,
State of CSS/JS/HTML survey results, standards positions, developer signals,
browser bugs, caniuse pages, specifications, Etc.

The data can be seen as a reference data source for the entire web platform,
a hub that connects all other data sources together.

And our goal with the project, through consistent communication about
features, is to make it easier for all web devs to understand the web platform,
find information about it, make decisions, and be confident about it.

21

The project lives on GitHub.
Owned by the WebDX community group at W3C, which I co-chair, and which you’re
more than welcome to join.

70 contributors.
Used by 400 people.
230 forks.
Apache 2.0 license.
With at least 1 release per week to always make sure the compat data is up to date.

Can be used as a dependency via NPM. Or download the JSON data directly from
GitHub.
Produced more than 100 releases so far.
Easy to use too.

22

Using web-features

1. Install the dependency

npm install web-features

2. Import the data in your project

import { features } from 'web-features';

3. Use the data!

const data = features.popover;

Usage example.
Like BCD, very simple.
NPM is the simplest, but can only download the JSON from the github release.

23

I talked about interconnecting data before, and here is an illustration of this.

On the WebDX group, we also maintain a site called the web platform features explore,
which lists all our features + connected data sources.

Here it shows the entry for the invoker commands feature.
And you can see how it not only shows the feature’s name, description and baseline
status, but other connected data sources too:
- Mdn docs
- Spec
- Surveys which mention the feature
- Developer signals upvotes

24

Another good example that shows scroll-driven animations with:
- Links to browser bugs
- Links to vendor standard positions
- Usage metrics from chromestatus.com
- WPT test result link

25

Who uses web-features?

• MDN

• caniuse.com

• caniwebview.com

• VS Code

• JetBrains IntelliJ-based IDEs

• DevTools

• RUMVision

• RUM Archive Insights

• ESLint CSS plugin

• StyleLint Baseline plugin

• browserslist

• webstastus.dev

• Web platform features explorer

• …

Now let’s look at where the web-features data is used today.

The first and most important consumers now are MDN and caniuse.com, which
use the data to display Baseline banners.

But many other tools have started to use web-features data now too:
VSCode, WebStorm, browser DevTools.
There’s an ESLint Baseline rule too.

Dashboards too:
explorer (feature pages, release notes)
webstatus (with wpt results)

And more coming all the time.

26

And you can build your own thing with the data too!

On the left is an example of a feature finder idea I had the other day and started
to hack on.
It lets you navigate through the web platform, organized by web dev activities,
like networking, or file handling, etc.,
and then find the features you can use to implement your tasks.

On the right is someone on social network who shared they were working on a
Baseline countdown web page,
To show the time remaining before a feature reaches the Baseline Widely
Available stage.

27

Keeping track of changes

Knowing what’s ok to use

So why is this useful again?

Some of the most frustrating pain points which developers share through
surveys and other feedback channels
beside the lack of interoperability
is keeping track of the rapid pace of changes, and knowing what can be used in
production safely.

Baseline helps with the latter, practically, by giving a simplified status in
prominent places such as editors and docs.

Dashboard sites and other tools built with web-features, can help with the
former.

28

RSS feed

Release notes

Browser releases

Taking the example of the web features explorer website I mentioned before,

We’re experimenting with release notes across browsers.
But also individual brower releases.
And RSS feeds so you can keep track at your own pace, in your own RSS client.

So these are the types of things we can do with the data.
I’m hopeful that the web community can innovate in this area and gradually
make it more and more enjoyable to work with the web platform.

29

What’s not covered (yet)

Alright, so web-features is great!
But like with any in-progress project, there’s always more to do.
So, let’s look at what the project doesn’t cover today yet.

30

Assistive technology support is
not included yet.

But …

Assistive technology support is one of the most important one.
The Baseline status that web-features computes is based on BCD. BCD does
care about bugs in browsers that may prevent a web feature from being
accessibility supported.
So that’s a start.
But we don’t have data about how features work across the matrix of browsers +
OS + assistive technologies. So, that part is missing from Baseline.

We’re working together with Lola Odelola, who’s actually here today and giving a
talk later.
Lola is working on a project called ACD, Accessibility Compat Data, which
eventually should get us in a position to think about what it means to include
accessibility considerations in Baseline.

31

Progressive enhancement,
polyfills, fallbacks.

But, Baseline is not YES/NO

Progressive enhancement is another pretty important one.
Because a feature doesn’t have a Baseline status doesn’t mean you can’t use it.
You could very successfully use it as a progressive enhancement, or with a
fallback or a polyfill.

So, never think of Baseline as a YES/NO status.
Think of it as a YES/Maybe YES.
Nothing replaces careful consideration of your specific audience and use case.

Also, we’ve been discussing about linking web-features to polyfills and other
useful resources,
so that dashboards and tools can start giving you more actionable information
than just a thing isn’t Baseline.

32

Partial support, form factor-
specific features, etc.

Web features sometimes take years to appear in browsers,
and even when they do, it takes even more years for them to mature enough to
be complete and fully interoperable across all browsers.

That means that it’s common for features to be partially implemented for a
while.

On the web-features repo, we don’t yet have a way to deal with this.
A feature is either supported by a browser, or it’s not.

That’s because the Baseline status we compute is simple by design.
The more nuance we add to it, such as partial support, or support for mobile-
only features, etc. makes Baseline more complicated.

We wish to retain Baseline’s simple status, but over time add more of the
nuance in the underlying data.
This way, the sites and tools that consume the data can keep on showing the
nice and simple Baseline banner,

33

But also add interesting notes about special cases.

33

Let’s continue to be responsible
web developers!

So, it's important to continue being a responsible web developers
especially these days where vibe coding is a thing.

Baseline is a tool for making some quicker decisions,
it’s not a substitute for actual engineering.

34

• Data is critical infrastructure for the web

• Funding is always needed

• Have fun with web-features

• Join WebDX

And with that I’ll leave you with a few things to keep in mind:

- BCD and web-features are two very important data sources for web
developers, even if you don’t realize it.

- They take funding to work on. If your company invests or relies on the web,
consider helping out. Talk to me.

- Play with web-features and let us know if you build something useful.
- Join the WebDX CG, we’re a welcoming bunch of folks who want to make the

web a better place.

35

 Thank you!

Find me at https://patrickbrosset.com

Thank you!

36

https://patrickbrosset.com/

	Slide 1: Improving the web developer experience one feature at a time
	Slide 2: It’s not just about the code. Let’s talk data!
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Up-to-date, high-quality data is critical infrastructure for the web industry
	Slide 10: browser-compat-data (BCD)
	Slide 11: BCD in numbers
	Slide 12: Main contributors
	Slide 13: Using BCD
	Slide 14
	Slide 15
	Slide 16: Donate now!
	Slide 17: More data sources
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: Using web-features
	Slide 24
	Slide 25
	Slide 26: Who uses web-features?
	Slide 27
	Slide 28: Keeping track of changes Knowing what’s ok to use
	Slide 29
	Slide 30: What’s not covered (yet)
	Slide 31: Assistive technology support is not included yet. But …
	Slide 32: Progressive enhancement, polyfills, fallbacks. But, Baseline is not YES/NO
	Slide 33: Partial support, form factor-specific features, etc.
	Slide 34:
	Slide 35
	Slide 36

